Simpósio Conjunto da Sociedade Europeia de Cardiologia e Sociedade Brasileira de Cardiologia

- ESC Congress
- Munique, Alemanha, Setembro 2018

Joint with the Brazilian Society of Cardiology

Rheumatic valve disease at various stages in life

Complications and long term sequelae of rheumatic valve disease

Renato A. K. Kalil

Full Professor of Surgery - UFCSPA Emeritus Professor Post-Graduation Program of Cardiology /FUC STS International Member Scientific Director Brazilian Society Cardiovascular Surgery Fellow of AHA and ACC

kalil@cardiol.br

Age Pyramid Evolution 1960 - 2000

Brasil 1960- 1980

Brasil 1980-2000

ESC Mur

Age Pyramid in 2010 Census

Pirâmides Etárias

Brasil

) anos e mais		
95 a 99 anos		
90 a 94 anos		
85 a 89 anos		
80 a 84 anos		
75 a 79 anos		
70 a 74 anos		
65 e 69 enos		
60 a 64 anos		
55 a 59 anos		
50 a 54 anos		
45 a 49 anos		
40 a 44 anos		
35 a 39 anos		
30 a 34 anos		
25 a 29 anos		
20 a 24 anos		
15 a 19 anos		
10 a 14 anos		
5 a 9 anos		
0 a 4 anos	Homens Mulheres	

IBGE

Evolução da pirâmide etária do BR

Age Pyramid Comparizon: France 2005 & Brazil 2050

MITRAL STENOSIS 1969 - 1994 *n* = 1799 Age = 41+- 18 years Gender = male 24% female 76% Rheumatic = 93% **Reoperations = 31\%**

MITRAL STENOSIS 1969 – 1994 n = 1799

 Associated Lesions:
 Hospital Mortality

 Isolated MS = 1444
 80.3%
 66
 4.57%

 Mi + Ao
 =
 251
 13.9%
 21
 8.37%

 Mi + Tr
 =
 90
 5.0%
 17
 18.9%

 Mi + Ao + Tr =
 14
 0.8%
 1
 7.1%

ESC Congress Munich 2018

-•

MITRAL STENOSIS 1969 – 1994 n = 1799

Results by Procedure

Valvuloplasty Prosthesis n 1022 (56.8%) 777 (43.2%) Hospital Mortality 24 2.3% 84 10.8%

Case: State of Rio Grande do Sul Prevention Program of Rheumatic Fever

Stablished Feb 07, 1974

1954, WHO recognized importance of Secondary Prevention for RF

1973, A. Achutti & cols proposed a plan for RF Secondary Prevention, Based on a previous Thomas Strasser's WHO plan for Mediterranean Countries Observed by PAHO

*amicorextension.blogspot.com.br/2012/11/ febre-reumatica.html

ESC Congress Munich 2018

Manual of operational standards for a program to extand coverage at different levels of care

PAN AMERICAN HEALTH ORGANIZATION

ESC Congress

Rheumatic Disease

Prevalence of RHD in a Reference Hospital of South Brazil jan 2012 – fev 2013

Rheumatic Fever Hospitalizations from 2002 to 2006

Fonte: Ministério da Saúde – Sistema de informações hospitalares do SUS (SIH/SUS). Gráfico 1. Número de casos internados por Febre Reumática Aguda no Brasil

ESC Congress

Munich 2018

Spina GS. Rev Med (São Paulo). 2008 abr.-jun.;87(2):128-41.

Very heterogeneous country

North, Northeast & Center-West less developed than South and Southeast

Different resources

ESC Congress Munich 2018

Different access to medical care

Brazilian Society CV Surgery data, 2009

BRAZILIAN SOCIETY OF CARDIOVASCULAR SURGERY

DISTRIBUTION OF HOSPITALS PERFORMING CARDIOVASCULAR SURGERY PER BRAZILIAN STATE

www.sbccv.org.br

ciedade Braziliun Isileira de Society Of Urgia Certifovasci Irdiovascular Surgery

Isolated Mitral Valve Surgery: The Society of Thoracic Surgeons Adult Cardiac Surgery Database Analysis

Fig 3. Proportion of patients undergoing isolated primary mitral valve operations (overall group) between 2011 and 2016 for each underlying etiology of mitral valve disease. The proportions were calculated from a subset of patients with known etiology (n = 60,185; unknown etiology = 31%; 27,029 of 87,214 patients). (HOCM = hypertrophic obstructive cardiomyopathy.)

Ann Thorac Surg 2018; ■: ■-■

Isolated Mitral Valve Surgery: The Society of Thoracic Surgeons Adult Cardiac Surgery Database Analysis

Table 1. Hierarchical Assessment of Etiologies Underlying Mitral Valve Disease and Proportion of Patients Undergoing Isolated Primary Mitral Valve Repair or Replacement Within Each Etiology Between 2011 and 2016

Etiology	Patients $(n = 87,214)$	Repair (%)	Replace (%)
Degenerative leaflet prolapse	36,554	82.7	17.3
Rheumatic disease	13,545	17.5	82.5
Endocarditis	3,085	48.1	51.9
Pure annular dilation	2,265	84.9	15.1
Uncommon diseases	2,219	68.2	31.8
Nonischemic cardiomyopathy	1,731	66.0	34.0
Ischemic disease	785	58.2	41.8
Unknown	27,029	67.0	33.0

Predictors of Very Late Events After Percutaneous Mitraln=32Valvuloplasty in Patients With Mitral Stenosis1987 - 2011

PMV for rheumatic MS maintain good clinical outcomes for as long as 2 decades and the most important predictors of long-term outcomes are unfavorable valve anatomy and the persistence of PH.

In addition, the most important determinant of persistent PH after an initially successful procedure is a suboptimal valve opening

Mitral valve surgery after percutaneous mitral commissurotomy:is repair still feasible?

1993 – 2012 n = 61 patients with previous PMC

Repair in 38(62.3%).

ESC Congress Munich 2018

Figure 1: Overall survival curve of the study population compared with an ageand sex-adjusted general population (National Institute of Statistics, census 2011). Pts: patients.

Figure 2: Survival free from mitral reoperation of patients submitted to mitral valve surgery after previous percutaneous mitral commissurotomy. Pts: patients.

Coutinho GF, Branco CF, Jorge E, Correia PM, Antunes MJ. (Coimbra, PT)Eur J Cardiothorac Surg 2015;47:e1–e6.

Late Outcome of Unsupported Annuloplasty for Rheumatic Mitral Regurgitation

RENATO A. K. KALIL, MD, PHD, FERNANDO A. LUCCHESE, MD, FACC, PAULO R. PRATES, MD, JOÃO R. M. SANT'ANNA, MD, FARID C. FAES, MD, EDEMAR PEREIRA, MD, IVO A. NESRALLA, MD

Porto Alegre, Brazil

Figure 1. The unsupported mitral annuloplasty procedure consisted of a reduction in the mural portion of the annulus obtained with the

(J Am Coll Cardiol 1993;22:1915-20)

N = 15455 male 99 female Age 5 to 73 (36+-16y)

Late Outcome of Unsupported Annuloplasty for Rheumatic Mitral Regurgitation

RENATO A. K. KALIL, MD, PhD, FERNANDO A. LUCCHESE, MD, FACC, PAULO R. PRATES, MD, JOÃO R. M. SANT'ANNA, MD, FARID C. FAES, MD, EDEMAR PEREIRA, MD, IVO A. NESRALLA, MD

Porto Alegre, Brazil

N = 154 / 55 male 99 female / age 5 to 73 (36+-16y)

Cosgrove-Edwards[®] Annuloplasty Band Carpentier-Edwards Physio[™] Annuloplasty

ESC

Carpentier-Edwards Classic[™] Annuloplasty Rings

Technical standardization Reproducibility Redilation prevention Support to the surgeon Possible *"valve in ring" later*

Compromises dynamic nature Reduces basal LV contraction Changes the saddle shape of mitral annulus Difficults growing, in children Useless in anterior portion and may cause SAM Deiscence

ES

MUNICII ZVIO

DISADVANTAGES

TABLE 25-3

Reconstructive Techniques in a Series of 951 Patients with Rheumatic Mitral Valve Diseases

Techniques	Ν	%
Remodelling annuloplasty	899	95
Chordae shortening	717	75
Chordae transfer	99	10
Extensive chordae resection	58	7
Commissurotomy	373	39
Pericardial extension	65	7.5
Resection of localized calcification	43	5

Chauvaud S, Fuzellier JF, Berrebi A, et al: Long-term (29 years) results of reconstructive surgery in rheumatic mitral valve insufficiency, *Circulation* 104(12 Suppl 1):I12-I15, 2001.

FIGURE 57–50 Structural deterioration of bioprosthetic valves. **A**, Valve failure related to mineralization and collagen degeneration. **B**, Cuspal tears and perforations. These processes may occur independently, or they may be synergistic. (**A**, From Virmani R, Burke AP, Farb A: Pathology of valvular heart disease. *In* Rahimtoola SH [ed]: Valvular Heart Disease. *In* Braunwald E [series ed]: Atlas of Heart Diseases. Vol 11. Philadelphia, Current Medicine, 1997, p 1.26; **B**, From Manabe H, Yutani C [eds]: Atlas of Valvular Heart Disease. Singapore, Churchill Livingstone, 1998, p 158.)

Clinical outcomes in 1731 patients undergoing mitral valve surgery for rheumatic valve disease

mean age = 52.3±12.5 years female = 1190(68.7%)

Figure 1 Distribution of patients according to mitral valve (MV) procedures based on patient age (red=repair; blue=mechanical valvereplacement; orange=bioprosthetic valve replacement).

ESC Congress Munich 2018

Kim WK, et al. Heart 2017;**0**:1–8. doi:10.1136/heartjnl-2017-312249 (On line) Seoul, Korea

Clinical outcomes in 1731 patients undergoing mitral valve surgery for rheumatic valve disease

mean age = 52.3±12.5 years female = 1190(68.7%)

Figure 2 Unadjusted Kaplan-Meier (KM) plots for cumulative overall mortality (A), reoperation (B) and valve-related complication rates (C) according to the types of surgery. Shaded bands indicate areas within 95% Cis.

(red=repair;

blue=mechanical valve replacement;

orange=bioprosthetic valve replacement).

ESC Congress Munich 2018

Kim WK, et al. Heart 2017;0:1-8. doi:10.1136/heartjnl-2017-312249 (On line) Seoul, Korea

Clinical outcomes in 1731 patients undergoing mitral valve surgery for rheumatic valve disease

mean age = 52.3±12.5 years female = 1190(68.7%)

Figure 3 Adjusted Kaplan-Meier plots for cumulative overall mortality (A), reoperation (B) and valve-related complication rates (C) according to the types of surgery. Shaded bands indicate areas within 95% CIs (red=repair; blue=replacement).

ESC Congress Munich 2018

Kim WK, et al. Heart 2017;0:1-8. doi:10.1136/heartjnl-2017-312249 (On line) Seoul, Korea

Adjusted outcomes

A.

Clinical outcomes in 1731 patients undergoing mitral valve surgery for rheumatic valve disease

Key messages

ESC Congress

Munich 2018

What might this study add?

Valve repair in well-selected patients with severe rheumatic MV disease showed comparable survival outcomes (HR, 1.24; 95% CI 0.62 to 2.48; P=0.54) and a trend towards more favourable valve-related outcomes (HR, 0.57; 95% CI 0.33 to 0.99; P=0.045) compared with valve replacement surgery.

How might this impact on clinical practice?

The MV repair procedure for rheumatic heart disease may be a reasonable alternative to replacement surgery in well-selected young patients.

Kim WK, et al. Heart 2017;0:1-8. doi:10.1136/heartjnl-2017-312249 (On line) Seoul, Korea

Figure I. Actuarial global survival: mitral valve (MV) repair versus mechanical valve replacement (MVR).

ESC Congress Munich 2018 Remenyi et al (New Zealand). Improved Long-Term Survival for Rheumatic Mitral Valve Repair Compared to Replacement in the Young

World Journal for Pediatric and Congenital Heart Surgery, 2012; 4(2): 155-164

Figure 6. Freedom from all late valve-related events (including late death, reoperation, infective endocarditis, and thrombotic and embolic events): Comparison of mitral valve (MV) repair, mechanical valve replacement (MVR), and bioprosthetic valve replacement (BVR).

ESC Congress

Munich 2018

Remenyi et al (New Zealand). Improved Long-Term Survival for Rheumatic Mitral Valve Repair Compared to Replacement in the Young

World Journal for Pediatric and Congenital Heart Surgery 2012; 4(2): 155-164

A meta-analysis of late outcomes of mitral valve repair in patients with rheumatic heart disease

Table 3 Outcomes at follow-up after MV repair surgery

Study name	30-day mortality (%)	Long-term survival (%)	Freedom from reoperation (%)	Freedom from valve-related event (%)
Fedakar <i>et al.</i> (6)	2.3	93.3 (5 years); 93.3 (10 years)	89	Unknown
Yankah et al. (7)	6	84.7 (5 years); 66.9 (10 years); 50.2 (15 years)	77.3 (5 years); 53.4 (10 years)	Unknown
Severino et al. (8)	0	99 (5 years); 92.1 (10 years)	91.2 (5 years); 71.1 (10 years)	Unknown
Kim <i>et al.</i> (9)	0.5	96.7 (5 years); 92.2 (10years)	97.5 (5 years); 96.7 (10 years)	90.3 (5 years); 85.5 (10 years)
Yakub <i>et al.</i> (10)	2.4	99.7 (5 years); 98.1 (10 years)	91.8 (5 years); 87.3 (10 years)	85.6 (5 years); 72.8 (10 years)
Waikittipong et al. (11)	1	95.5 (5 years); 89.2 (10 years)	94.5 (5 years); 82.7 (10 years)	68 (5 years); 56.4 (10 years)
Kumar et al. (12)	3.6	93.8 (5 years); 92 (10 years)	95.5 (5 years); 81 (10 years)	32 (10 years)
Kalangos <i>et al.</i> (13)	0	99.5	94.5 (5 years); 92.7 (10 years)	93.2 (5 years); 86.5 (10 years)
El Oumeiri <i>et al.</i> (14)	0	94 (5 years); 81 (10 years)	94 (10 years)	86.5 (5 years); 86 (10 years)
Pomerantzeff et al. (15)	0.9	86.4 (20 years)	30.4 (20 years)	99.7 (thromboembolism-free), 95.6 (endocarditis-free) in 20 years
MV, mitral valve.				

Fu et al (China) J Thorac Dis 2017;9(11):4366-4375

Outcomes of mitral valve repair compared with replacement in patients undergoing concomitant aortic valve surgery: a meta-analysis of observational studies

Early Mortality: MV repair vs MVR					Late Mortality: MV repair vs MVR			[MV reoperation rate: MV repair vs MV/R													
				Events,	Events,	%				Late Mortality. With	repair vs wivr	Events,	Events,	%			1010 160	peration rat		Events,	Events,	%
Study	Year		RR (95% CI)	MVrepair	MVR	Weight	s	Study	Year		RR (95% CI)	MVrepair	MVR	Weight		Study	Year		RR (95% CI)	MVrepair	MVR	Weight
Gillinov et al.	2003		0.78 (0.44, 1.38)	16/295	36/518	19.45	G	Gillinov et al.	2003		0.68 (0.55, 0.84)	81/279	206/482	64.64		Gillinov et al.	2003		0.70 (0.48, 1.02)	34/295	85/518	23.34
Hamamoto et al.	2003	(0.23 (0.03, 1.73)	1/80	16/299	1.58	н	Hamamoto et al.	2003	÷ -	1.19 (0.59, 2.43)	9/79	27/283	5.65		Hamamoto et al.	2003	÷.	2.11 (1.56, 2.87)	39/80	69/299	23.75
Ho et al.	2004	- -	2.03 (0.41, 9.97)	3/201	3/408	2.51	н	Ho et al.	2004	_	1.23 (0.30, 5.08)	3/198	5/405	1.42		Ho et al.	2004		4.06 (0.75, 21.98)	4/201	2/408	11.37
Talwar et al.	2007		0.62 (0.22, 1.72)	4/76	25/293	6.04	т	Talwar et al.	2007	<u>+</u>	0.72 (0.28, 1.80)	5/72	26/268	3.38		Talwar et al.	2007		26.99 (3.37, 216.02)	7/76	1/293	8.89
Kuwaki et al.	2007		1.03 (0.26, 4.13)	3/47	5/81	3.31	к	Kuwaki et al.	2007		0.55 (0.24, 1.26)	6/44	19/76	4.07		Kuwaki et al.	2007	=	3.02 (1.64, 5.56)	21/47	12/81	21.38
Mc gonigle et al.	2007		0.40 (0.05, 2.92)	1/43	16/273	1.60	N	Mc gonigle et al.	2007		1.04 (0.66, 1.66)	14/42	82/257	13.34		Mc gonigle et al.	2007 -		0.48 (0.03, 8.35)	0/43	6/273	5.67
Leavitt et al.	2009		0.61 (0.44, 0.83)	46/418	116/639	62.60	ĸ	Kim et al	2013		0.89 (0.48, 1.64)	13/91	25/155	7.50		Kim at al	2012	_	0.15 (0.01, 0.60)	0.005	E/4E9	E 60
Kim et al.	2013	÷.	2.22 (0.51, 9.69)	4/95	3/158	2.92		Kill et al.	2013		0.08 (0.40, 1.04)	13/81	201100	1.50		Kim et al.	2013	•	0.15 (0.01, 2.69)	0/95	5/158	5.59
Overall (I-squared =	0.0%, p = 0.4	453)	0.68 (0.53, 0.87)	78/1255	220/2669	100.00	C	Overall (I-squared = 0	.0%, p = 0.453)	Ŷ	0.76 (0.64, 0.90)	131/805	390/1926	100.00		Overall (I-squared	= 84.4%, p = 0.000)	$\langle \cdot \rangle$	1.89 (0.87, 4.10)	105/837	180/2030	100.00
Test of RR=1: z= 3.0	, p= 0.003	Ť.					т	Test of RR=1: z= 3.20	0, p= 0.001							Test of RR=1: z= 1.	61, p= 0.108					
NOTE: Weights are	rom random	effects analysis					N	NOTE: Weights are fro	om random effec	ts analysis						NOTE: Weights are	from random effects analy	sis				
							.1 1 MVrepair better MVR better	10						MVrepai	.1 1 10 r better MVR better							
. MV: mitral valve; I	/VR: mitral	valve replacement,	204224				/. M	MV: mitral valve; MV	VR: mitral valv	/e replacement.						ion rate. MV: mitral	valve; MVR: mitral valv	e replacement.				

Conclusion

In patients undergoing concomitant mitral and AV surgery, MV repair is associated with improved early and late survival without any increased risk for mitral valve reoperation.

However, in patients with rheumatic heart disease MV repair does not impart any survival advantage while the risk for MV reoperation remains significantly higher.

MV replacement is preferable to repair in RHD patients who undergo dual valve surgery pending more data from randomized controlled trials.

Fig. 4 – A) Freedom from valve failure after mitral valve repair. Failure was defined as any mitral regurgitation (MR) \geq moderate or reoperation due to any cause. B) Freedom from valve failure stratified according to patients presenting with degenerative or rheumatic disease. FIg. 5 – A) Freedom from late development of moderate or severe tricuspid regurgitation (TR) after mitral valve repair. B) Freedom from late development of moderate or severe tricuspid regurgitation (TR) after mitral valve repair stratified according to patients presenting degenerative or rheumatic disease.

MR=mitral regurgitation

MR=mitral regurgitation

ESC/EACTS Guidelines Valvular Heart Disease

In severe primary tricuspid regurgitation, surgery is not only recommended in symptomatic patients but should also be considered in asymptomatic patients when progressive RV dilatation or decline of RV function is observed.

In secondary tricuspid regurgitation repair provides reverse remodeling of the RV and improvement of functional status even in the absence of substantial tricuspid regurgitation when annulus dilatation is present. It should therefore be performed liberally.

ESC Congress

Munich 2018

Figure 6: Indications for surgery in tricuspid regurgitation. LV: left ventricular; RV: right ventricular; TA: tricuspid annulus; TR: tricuspid regurgitation; TV: tricuspid valve; TVR: tricuspid valve replacement.

^aTA ≥ 40 mm or > 21 mm/m².

European Journal of Cardio-Thoracic Surgery 52 (2017) 616–664

Tricuspid Valve Repair With an Annuloplasty Ring Results in Improved Long-Term Outcomes

Conclusions

ESC Congress Munich 2018

Placement of an annuloplasty ring during tricuspid valve repair is associated with a decreased recurrence of TR, and with improved long-term survival and event-free survival. An annuloplasty ring should therefore be used more routinely in tricuspid valve surgery.

Tang GHL et al (Toronto).Circulation. 2006;114[suppl I]:I-577–I-581

Cox: Maze Procedure for Atrial Fibrillation

ESC Congress Munich 2018

Ann Thorac Surg 1993;55:578-80

The Cox maze III procedure for atrial fibrillation: Long-term efficacy in patients undergoing lone versus concomitant procedures

ESC Congress Munich 2018 Figure 1. Kaplan-Meier survival analysis of freedom from recurrent AF. The numbers on each line indicate the number of patients at risk. There was no difference in the long-term estimate of freedom from AF between the lone maze group (L) and the concomitant group (C; P = .64).

Mini-Maze Procedure

COBBAAN

bg. 2. Endocardial RF ablation creating encircling ioniation lesions around he right and the left patiennary versis (RFV, LFV) using the Thematine[®] w Cobm[®] device

Cut&Sew Pulmonary Veins Isolation

ESC Congress

Munich 2018

KALIL, R, et al.

Simple surgical isolation of pulmonary veins for secondary chronic atrial fibrillation treatment in mitral valve disease.

Ann Thorac Surg 2002;73:1169-1173.

Randomized study of surgical isolation of the pulmonary veins for correction of permanent atrial fibrillation associated with mitral valve disease

ESC Congress, Renato A. K. Kalil, MD, PhD, Luciana Schuch, MD, Roge´rio Abraha˜o, MD, Joao Ricardo M. Sant'Anna, MD, PhD, Gustavo Lima, MD, PhD, FACC, and Ivo A. Nesralla, MD, PhD

n=540 Repair =122 Replacement =418

Maze procedure for AF 79/122 repairs= 88% 116/418 replacements 33%

ESC Congress Munich 2018

Fig. 2. Unadjusted Kaplan—Meier curves for freedom from cardiac death and major events. (a) Outcomes following MV repair versus replacement. (b) Outcomes according to the presence of atrial fibrillation and undergoing a maze procedure.

J.B. Kim et al. (Seoul) European Journal of Cardio-thoracic Surgery 37 (2010) 1039—1046

Conclusions

- Operable rheumatic valve disease is still present in most regions with changing epidemiologic patterns due to prevention & migration
- Mitral valve is by far the most affected

ESC Congress

- Prevalence has changed from MS in adult patients to MR in youngs
- *Repair is preferable to replacement in favourable anatomy*
- With simultaneous aortic replacement, probably mitral replacement better

kalil@cardiol.br

- Secondary tricuspid regurgitation should be corrected early
- Atrial fibrillation treated simultaneously improves outcomes

Discussion Slides

Figure 9-1. Transatrial commissurotomy. Counterpressure by left hand (apper) user right index finger performing finger fracture of anterolateral commissure (middle). Demonstration of release of subvalvular chordal and papillary muscular fusion (lower).

Figure 9-3. Technique of transventricular valvotomy. Opened jaws of dilator are shown in mouth of valve in inset.

TABLE 32-1 Traditional Risk Factors for Thromboembolism

Atrial fibrillation

Increased left ventricular cavity size

Regional wall motion abnormality

Depressed ejection fraction

Hypercoagulability

Increased age

TABLE 32-2 Nontraditional Risk Factors for Thromboembolism Page 2010

Cancer

Systemic infection

Diabetes

Prior event

IgA against Chlamydia pneumoniae (CP)

Eosinophilia

Hypertension

Reproduced with permission from Butchart EG, Ionescu A, Payne N, et al: A new scoring system to determine thromboembolic risk after heart valve replacement. Circulation 2003; 108(Suppl II):II-68.

FIGURE 32-17 The correlation of number of risk factors to thromboembolic events. (Reproduced with permission from

approximately 40% of the bleeding episodes occurred in the first year after surgery. It is thus important during this initial postoperative time frame when the patient's anticoagulant levels are more likely to fluctuate, that INR be measured more frequently.³² In the early postoperative period, INR can occasionally jump to

TABLE 32-3 Target INR Recommendations

Normal ejection fraction and cavity size, NSR: INR 1.82.0, ASA

Any single factor: INR 2.0–2.5, ASA

Multiple factors or atrial fibrillation: INR 2.5-3.5

? Antiplatelet only

ASA = aspirin; INR = international normalized ratio; NSR = normal sinus rhythm.

In, Cohn L (Editor) Cardiac Surgery in the Adult

CALCIFIC PLATE AT ANTEROLATERAL COMMISSURE OF MITRAL VALVE, CONTRIBUTING TO INSUFFICIENCY

ESC Congress Munich 2018

© CIBA

THICKENING AND SHORTENING OF MITRAL CUSPS WITH "HAMSTRINGING" OF POSTERIOR CUSP OVER THE MUSCULATURE OF L. VENTRICLE BY TRACTION OF ENLARGED L. ATRIUM

MARKED ENLARGEMENT OF L. ATRIUM RESULTING FROM MITRAL INSUFFICIENCY

MITRAL INSUFFICIENCY: MITRAL VALVE VIEWED FROM BELOW; MARKED SHORTENING OF POSTERIOR CUSP, WITH ONLY SLIGHT COMMISSURAL FUSION, AND LITTLE FUSION AND SHORTENING OF CHORDAE TENDINEAE

MULTIVALVULAE DISEASE VIEWED FROM ABOVE: ADRTIC VALVE STENOTIC AND INCOMPETENT FROM FUSION OF ALL THREE COMMISSURES; MITRAL VALVE HAS ONLY A "SILTILKE" STENOTIC ORFICE, TRICUSPID VALVE A TRIANGULAR, FIXED, STENOTIC, AND INCOMPETENT ORFICE; PULMONARY VALVE NORMAL

ESC Congress Munich 2018

TRICUSPID VALVE VIEWED FROM BELOW: SOME FUSION AT EACH COMMISSURE, SHORTENING OF CUSPS, AND A LITTLE THICKENING AND SHORTENING OF CHORDAE TRIANGULAR ORIFICE OF A TRIANGULAR ORIFICE OF A STENOTIC, INSUFFICIENT VALVE, HYPERTROPHY OF R. VENTRICLE DUE TO ASSOCIATED MITRAL DISEASE; GREAT ENLARGEMENT OF R. ATRIUM

FIGURE 40-6 Pathology of the mitral valve in mitral stenosis. Thickened, rigid nodular appearance of the mitral valve leaflets viewed from the atria (A) and ventricle (B). Calcium is present in the commissure and the commissures are fused, resulting in a valve shaped like a fish mouth. Subvalvular apparatus is thick, fused, and shortened (B, C). Healthy mitral valve leaflets (D). (Reproduced with permission from Chandrashekhar Y, Westaby S, Narula J. Mitral stenosis. Lancet 2009; 374:1271.)

E

Μ

In, Cohn L (Editor) Cardiac Surgery in the Adult

Rheumatic Valve Lesions

FIGURE 25-2

ESC Congress Munich 2018

From: Carpentier's Reconstrutive Valve Surgery Carpentier, Adams, Filsoufi (editors) Saunders 2010

FIGURE 40-6 Pathology of the mitral valve in mitral stenosis. Thickened, rigid nodular appearance of the mitral valve leaflets viewed from the atria (A) and ventricle (B). Calcium is present in the commissure and the commissures are fused, resulting in a valve shaped like a fish mouth. Subvalvular apparatus is thick, fused, and shortened (B, C). Healthy mitral valve leaflets (D). (Reproduced with permission from Chandrashekhar Y, Westaby S, Narula J. Mitral stenosis. Lancet 2009; 374:1271.)

E

Μ

In, Cohn L (Editor) Cardiac Surgery in the Adult

ESC Congress Munich 2018

FIGURE 42-9 Operative mortality for elective, urgent, emergency, and salvage procedures for primary operations and reoperations for mitral valvular replacements. (Data used with permission from Society of Thoracic Surgeons.)

In, Cohn L (Editor) Cardiac Surgery in the Adult

Rheumatic Disease

Estimation based on IBGE Population Census:

- 10.000.000 streptococal pharingoamigdalites/y
- 30.000 new rheumatic fever cases/y
- 15.000 heart lesions/y
- DALY (disability-adjusted-life-years) index: 55.000 years lost for RF, or 26 years/pt (based in 2000 data)

Barbosa PJB, Müller RE, Latado AL, Achutti AC, Ramos AIO, Weksler C, et al. Arq Bras Cardiol.2009;93(3 supl.4):1-18

Rheumatic Disease

Prevalence in some state capital schools: 1-7/1000 children*

Hospital Mortality and Costs**

	Mortality	Med Treatment	Surgical & Interv'l (US\$)							
2005	6.8%	26 million	47.5 million							
2007	7.5%	27.5 million	50 million							
	**Ministério	*Meira ZM et al. Heart. 2005 Aug; 91 (8): 1019-22 * Meira ZM et al. Arq Bras Cardiol. 1995 Oct; 65 (4): 331-4 **Ministério da Saúde (BR) [Internet]. Sistema de Informações Hospitalares do SUS (SIH/SUS).								
Munich 2018			.http://w3.datasus.gov.br/datasus/datasus.php							

ESC/EACTS Guidelines Valvular Heart Disease

ESC Congress Munich 2018 Indications for PMC and mitral valve surgery in clinically significant (moderate or severe) mitral stenosis (valve area \leq 1.5 cm²)

Recommendations	Class ^a	Level ^b
PMC is indicated in symptomatic patients without unfavourable characteristics ^c for PMC [144, 146, 148].	I.	в
PMC is indicated in any symptomatic patients with a contraindication or a high risk for surgery.	1	с
Mitral valve surgery is indicated in sympto- matic patients who are not suitable for PMC.	I	с
PMC should be considered as initial treat- ment in symptomatic patients with subop- timal anatomy but no unfavourable clinical characteristics for PMC. ^c	lla	с
 PMC should be considered in asymptomatic patients without unfavourable clinical and anatomical characteristics^c for PMC and: high thromboembolic risk (history of systemic embolism, dense spontaneous contrast in the LA, new-onset or paroxysmal atrial fibrillation), and/or high risk of haemodynamic decompensation (systolic pulmonary pressure >50 mmHg at rest, need for major noncardiac surgery, desire for pregnancy). 	lla	с

LA: left atrium; PMC: percutaneous mitral commissurotomy. ^aClass of recommendation. European Journal of Cardio-Thoracic Surgery 52 (2017) 616– 664

Mitral valve repair with aortic valve replacement in rheumatic heart disease. n=609, from 1992 to 2001, followed up to 10y AV replacement + mitral valve repair (n = 201)

+mitral valve replacement (n = 408)

30-day mortality = 1.4% for mitral repair x 0.7% for mitral replacement (p = 0.4)

Survival at 9 y = 96.5 +/- 1.4% after mitral repair x 89.7 +/- 7.8% after replacement (p = 0.73)

Freedom major bleeding/9 y = 94.8 +/- 2.4% after repair x 81 +/- 7.2% replacement (p = 0.03)

Results of mitral repair with AV replacement were comparable to those of double valve replacement.

Major bleeding was less frequent after mitral repair with AV replacement.

Therefore, whenever feasible, mitral valve repair should be attempted in patients with rheumatic heart disease who need concomitant aortic valve replacement.

Echocardiographic prevalence of rheumatic heart disease in Brazilian schoolchildren: Data from the PROVAR study

5996 students across 21 schools. Median age = 11.9 [9.0/15.0] years, 59% females.

ESC Congress

RHD prevalence 42/1000 (*n* = 251): 37/1000 borderline (n = 221) and 5/1000 definite (n = 30).

Mitral regurgitation in 203 (80.9%), Ao regurgitation in 38 (15.1%), and mixed mitral/aortic valve disease in 10 (4.0%) children.

Older children had higher prevalence (50/1000 vs. 28/1000, p < 0.001), but no difference was observed between northern (lower resourced) and central areas (34/1000 vs. 44/1000, p = 0.31).

Females had higher prevalence (48/1000 vs. 35/1000, p = 0.016).

Nascimento BR, International Journal of Cardiology2016;219: 439-445

A meta-analysis of late outcomes of mitral valve repair in patients with rheumatic heart disease

Figure 1 Flow chart of the selection process.

Study name	Country	Study period	Total patients	Design	Quality score
Fedakar et al. (6)	Turkey	1998–2008	173	Observational	6
Yankah et al. (7)	Germany	1986–2009	50	Observational	6
Severino et al. (8)	Brazil	1994–2005	104	Observational	7
Kim et al. (9)	Korea	1997–2010	193	Observational	7
Yakub et al. (10)	Malaysia	1997–2010	627	Observational	7
Waikittipong et al. (11)	Thailand	2003–2014	97	Observational	6
Kumar et al. (12)	India	1988–2003	898	Observational	7
Kalangos et al. (13)	Switzerland	1994–2006	220	Observational	8
El Oumeiri et al. (14)	Belgium	1996–2007	78	Observational	7
Pomerantzeff et al. (15)	Brazil	1985–2005	330	Observational	6

Table 1 Study characteristics

ESC Congress Munich 2018

Fu et al (China) J Thorac Dis 2017;9(11):4366-4375

Outcomes of mitral valve repair compared with replacement in patients undergoing concomitant aortic valve surgery: a meta-analysis of observational studies

Table 1: Study characteristics

Study name	Country	Study period	Design	Aetiology of MV disease	Total patients	RHD (%)	Follow-up (patient-years)
Gillinov et al. [14]	USA	1975-1998	Observational	Mixed	813	580 (71.3%)	5163
Hamamoto et al. [15]	Japan	1977-2000	Observational	Mixed	379	225 (59.3%)	3313
Ho et al. [16]	Vietnam	1992-2001	Observational	Rheumatic	609	609 (100%)	2204
Talwar et al. [17]	India	1995-2005	Observational	Rheumatic	369	369 (100%)	1575
Kuwaki et al. [18]	Japan	1981-2003	Observational	Rheumatic	128	128 (100%)	1025
Mcgonigle et al. [19]	UK	1977-1997	Observational	Mixed	316	242 (76.5%)	2374
Leavitt et al. [20]	USA	1989-2007	Observational	Mixed	1057	Unknown	Unknown
Kim et al. [21]	Korea	1990-2011	Observational	Mixed	253	115 (45.4%)	1520

Mixed: rheumatic as well as non-rheumatic aetiology; MV: mitral valve; RHD: rheumatic heart disease

Repair: lower early (p=0.003) and late (p=0.001) mortalities,

but more reoperations in RHD patients undergoing MV repair (RR: 5.10, p = 0.005).

ESC Congress Munich 2018

Saurav A, Alla VM, Kaushik M, Hunter CC, Mooss AV.. Eur J Cardiothorac Surg 2015;48:347–53.